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Abslraei I1 is argued that a model of dusler-clusler aggregation with random bond 
breaking leads to an equilibrium regime in which all configurations wilh the same number 
of bonds have equal probabilily LO occur. Thus our model of cluster-elusler aggregation 
with random bond breaking and branched polymers (lattice animals) belongs lo the same 
universaliiy class. The results are compared with numerical observations. 

Irreversible aggregation, either particle-cluster or cluster-cluster aggregation, of 
diffusive clusters (particles) leads to growth of fractal structures [l]. For irreversible 
growth, the probability for a certain configuration to occur depends on the number 
of distinct histories this configuration can be grown and on the weight each of these 
histories has [Z]. This turns irreversible aggregation into a complicated statistical 
problem. On the other hand in equilibrium structures, l i e  lattice animals or branched 
polymers [3], all configurations with the same number of bonds have equal probability 
to occur. 

The irreversible diffusion-limited particle-cluster aggregation model (DLA) has 
been modified by allowing for aggregation and disaggregation [4] and recently it 
has been proved that this model reaches an equilibrium identical with branched 
polymers [5]. Similarly, diffusion-limited cluster-cluster aggregation (DLCA) has been 
modified in a simulation by allowing for random bond breaking yielding the  fractal 
dimension of equilibrium StructureS [6] .  In contrast, DLCA with non-random bond 
breaking has been shown numerically [7] and experimentally [SI to yield structures 
with a fractal dimension continuously depending on a binding energy between 
particles. In this paper we show that reaction-limited cluster-cluster aggregation 
(REA) with random bond breaking, assuming that clusters are stable when exploring 
mutual configurations, reaches an equilibrium identical with branched polymers. For 
DLCA with random bond breaking we argue that with the assumption that a cluster 
typically breaks bonds and aggregates with its own fragments-assumed to be stable- 
many times before the cluster or its fragments aggregate with other clusters,.a cluster 
relaxes towards equilibrium-branched polymers. In this equilibrium regime the cluster 
structure is independent of the cluster mobility which, however, influences the cluster- 
mass distribution. 

In DLCA with random bond breaking as simulated by Kolb [6], particles are placed 
on a lattice at random. No two particles are allowed to occupy the same site and 
no bonds are yet formed. Particles undergo a random walk. If a particle attempts 
to move to an already occupied site, it will not be allowed to move; instead a bond 
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will be placed between the neighbouring particles which have just collided. Clusters 
continue the random walk and its particles obey the same rule for bond formation 
with particles from other clusters as described above. In the case of more than one 
pair of particles colliding simultaneously one of them is chosen at random to form 
a bond, leading to loopless clusters. The diffusing velocity U of a cluster of mass 
m is characterized by an exponent Q in v ( m )  = ma. ?b this point the model is 
identical with DLCA. Now we allow for bond breaking. Bonds are broken randomly 
and independently with a probability 1/r per unit time. Initially aggregation will 
dominate until the clusters are large enough, such that the bonds formed and the 
bonds broken balance. The characteristic time to reach this equilibrium regime is 
determined by a and +. Kolb's simulation yielded that in the equilibrium regime 
the clusters have a fractal dimension D = 1.57 f 0.06 (2.03 i 0.05) in two (three) 
dimensions, independent of a. The cluster-mass distribution depends on a. A sticking 
probability, p = 0.05, does not affect D 161. 

The distinction between lattice animals and branched polymers, which are believed 
to lie in the same equilibrium universality class, lies in how bonds are counted In 
lattice animals all adjacent pairs of sites are deemed equivalently bonded, whereas 
in branched polymers explicit bonds are required and loops of bonds are excluded. 
The branched polymer version is the key to connections with kinetic bond-breaking 
and aggregation models. In particular it ensures that clusters with contacting loops 
retain memory of how the loop was made (as an explicit bond) and therefore how 
this process can be uniquely reversed. This enables steady-state distributions to be 
understood as equilibria with the strong but simple-to-prove condition of detailed 
balance. 

For reversible cluster~luster aggregation a mean-field rate equation models the 
time evolution of the cluster-mass distribution [9] 

where c(s) is the number of clusters of mass s per unit volume, IC(i,j) the rate of 
aggregation of two clusters of mass i and j, and F ( i ,  j) the rate of fragmentation 
of a cluster of mass i -+ j into two clusters of mass i and j. The aggregation and 
fragmentation rates are the averages over all configurations. 

A detailed balance condition [9] 

F ( i , j ) c ( i + j )  = IC(i,j)c(i)c(j) (2) 

is consistent with a stationary, c(s), and with (1). A cluster of mass s may occur 
in many configurations, labelled A,  B or a,@. Let P,(A)  be the probability for a 
cluster of mass s to be in configuration A, k(i, a, j , p ,  A) the rate of aggregation 
of two clusters of mass and configuration (i, a) and ( j ,p)  into ( i  t j, A = (2 @ p), 
and f ( A ,  i, or,j,p) the rate of fragmentation of a cluster of mass and configuration 
( i  + j, A = a @ p) into two clusters (i, a) and (j, 0). The existence of a stationary 
structure is consistent with a detailed balance condition on the configurations 

f ( A ,  i, a > j ,  P)c(i t j)Pi+j(A) = k(i, a , j , p ,  A)c(i)Pi(a)c(j)Pj(P) (3) 
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and with (2) we substitute the cluster-mass distribution by the average aggregation 
and fragmentation rates: 

For a cluster in configuration A there is exactly one particular bond to be broken 
for fragmentation into a and p with A = a @ p. Thus for random bond breaking 
with rate 1/r it is f ( A , i , a , j , p )  = l / r  and the average fragmentation rate is 
F ( i , j )  = N ( i , j ) ( I / r )  where N ( i , j )  is the number of ways a cluster of size 
(i + j) can break into two clusters of size i and j, averaged over all configurations. 

Similarly for two clusters (i, a) and ( j ,  p) there is exactly one particular bond 
to be made to aggregate into ( i  + j, A = a @ p). In the reaction-limited regime 
the sticking rate, IC, between particles is sufficiently small to let two clusters 
explore all possible configurations, and assuming that during this exploration no 
breaking can occur, until they finally stick at random into one of them with rate 
IC( i ,a , j ,p ,A)  = IC and the average aggregation rate is K ( i , j )  = N(i,j)IC. Thus 
for reaction-limited cluster-cluster aggregation with random bond breaking we find 
with (4) 

p;+j(a@P) = Pi(")Pj(P). (5) 

All i, j decomposable configurations ( A ,  B, . . .) = OL @ p occur with equal 
probability. Starting with i = j = 1 for which there is only one configuration, 
<(a) = Pi, and since for each ( i , j )  pair there is exactly one (a, p) pair to form 
A, we find recursively 

that all configurations of the same mass are equally likely to occur. 
In contrast in the diffuion-limifed regime the rate of aggregation depends on the 

conligurations. Equation (4), derived fom detailed balance conditions, still holds, but 
due to k ( i , a , j , p , A )  the probabilities Pitj(A) are biased towards more tenuous 
configurations. However, with the key assumption that a cluster typically breaks bonds 
and aggregates with its own fragments many times before the duster or its fragments, 
which are assumed to be stable, aggregate with other clusters, we will argue that due 
to multiple random bond breaking and aggregation with its own fragments a cluster 
relaxes towards equilibrium. The validity of our key assumption is difficult to check, 
since it is not obvious how to estimate the number of necessaly fragmentation and 
aggregation events of a single cluster to reach equilibrium 

Let us consider a shgfe cluster of b = s - 1 bonds which can occur in many 
configurations, for instance the configurations A and B (see figure 1). Configuration 
A can evolve out of B by breaking the appropriate bond, letting the fragments 
undergo a random walk (or equivalently keeping one stationary and the other doing 
the random walk), and finally letting the fragments stick together at the appropriate 
site. The transition probability from A to B is 

1 1  T ( A , B )  = - w , , -  b ' J z  (7) 
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Figure 1. ?he transition from configuraiion A io B. 

where l / b  gives the probability to choose the appropriate bond to break, wij is the 
fraction of all walks from site i which reach site j without any particle of the fragment 
landing on the remaining cluster first, multiple visits to site j allowed and counted 
multiplicatively, and l / z  is the fraction of these which immediately form a bond with 
the neighbouring fragment site, where z is the coordination number of the lattice. 

An ambiguity ariscs on a lattice in the case of more than one pair of particles 
colliding simultaneously. While forming all possible bonds leads to loops, choosing 
one of the pairs at random to form a bond leads to loopless clusters. I n  the simulation 
[6] both possibilities have been investigated and have led to indistinguishable results; 
furthermore multiple contact events are seen to be rare (see figure 1 in [6]). From the 
theoretical point of view, there is a problcm that the different ways to bond appear to 
be in competition and thus to reduce each other’s probability of occuring. This would 
violate the requirement that each be in detailed balance with the corresponding 
constant probability to break it once made. In RLCA this problem is resolved by 
the low sticking probability, each sticking probability then representing a negligible 
perturbation on the probability of others. In DLCA there appears, however, to be a 
more severe problem which can only be solved by more drastic means. The simplest 
is ro keep the low sticking probability per time step as per RLCA but also to set the 
probability of a diffusion move per time step correspondingly small. Over the typical 
time to make a diffusion move the sticking probability is then high, corresponding to 
DLCA, but conflicts between events are eliminated, as per RLCA. The above resolution 
of difficulties in DLCA is equivalent to approaching a continuous time limit. Loops 
can also be resolved by recourse to continuous (i.e. real) space coordinates, wherein 
loops have negligible statistical weight to occur. 

Since for every walk from i to j in N steps there is exactly one corresponding 
time-reversed walk from j to i in N steps, the symmetry wij = wji holds. Thus the 
transition probabilities in both directions are identical T( A, B) = T(  B,  A) and the 
master equation for the configurational probabilities P,(A)  

(IP,O = x [ P , ( B ) T ( B , A )  - P , ( A ) T ( A ,  B ) ]  
B 

d l  
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has detailed balance solutions P, (A)  = constant For a single cluster all 
configurations of b bonds have the same probability to occur. Thus for DLCA 
with random bond breaking in the non-gelling regime two clusters may aggregate 
into a biased configuration but the new cluster relaxes towards equilibrium before 
aggregating with other clusters. 

A special feature of the reversible aggregation models considered above is that 
they have multiple contacts weighted in at most a linearly additive way. In a simple 
binary phase equilibrium model one would expect the Boltzmann factors to break a 
multiple contact to combine multiplicatively, thus favouring compact droplets when 
the energy of dissociation per contact is large compared to kRT. The aggregation 
models thus correspond to a marginal case where the energies are weak, and hence 
to critical equlibrium-branched polymers. The aggregation models could readily be 
modified to incorporate Boltzmann weighting of dissociation events with energies 
related to the number of contacts, and we could expect the corresponding droplet 
equilibrium to be obtained. 

In conclusion, within the assumption of stable clusters during the exploration of 
mutual configurations, cluster-cluster aggregation in the reaction-limited regime with 
random bond breaking leads to an ensemble in which all configurations with the same 
number of bonds have equal probability to occur. The same is true for the diffusion- 
limited regime, provided that single clusters break into stable bagments and aggregate 
sufficiently often to reach an unbiased structure before aggregatingwith other clusters. 
In this case the structure is independent of the cluster-mass distribution. This is in 
accord with simulations [6], which yield fractal dimensions equal to those of lattice 
animals, independent of the cluster-mass distribution which had been changed via the 
diffusivity parameter or a sticking probability. 

One of us (RW) would like to thank Shell Research Ltd for generous financial support 
for this work. 
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